

MasQCLIP for Open-Vocabulary Universal Image Segmentation

Xin Xu^{1*+,} Tianyi Xiong^{2*+}, Zheng Ding³, Zhuowen Tu³ ¹Peking University, ²Tsinghua University, ³University of California, San Diego

*Indicate equal contribution. +Work done during internship at University of California, San Diego.

Acknowledgement: This work is supported by NSF Award IIS-2127544.

Project Page: https://masqclip.github.io/

Introduction

(a) "a black cat". "an orange cat"

(c) "an adult", "

- Being Open-Vocabulary: Target of interest to be extracted can be freely specified using natural language description during inference.
- Being Universal: Perform instance, semantic, and panoptic segmentation under a unified framework.

Motivation

- CLIP aligns images and texts into the same feature space but cannot discriminate between objects of the same category.
- Previous works have difficulty in generating new mask proposals beyond supervision; and lack in adaption to mask classification due to the gap between image-level and regionlevel representation.

How to balance between maintaining generalization for more categories and adapting CLIP for mask classification?

Method

Progressive Distillation (stage 1)

- CLIP does not intrinsically assign higher confidence-scores to good-quality masks.
- Object Score: general indicator of mask quality Final Classification Score: $p_{cls}^{(i)} = p_{obi} \cdot p_{clin}^{(i)}$
- Utilize object score to filter high-quality mask proposals that do not overlap with mask annotations of base categories, producing extra annotations for training.

MasQ-Tuning (stage 2)

- For i-th Mask Class Token $x_{mask}^{(i)}$ and its query embedding $q_i = f_0(x_{mask}^{(i)})$, its attention weight softmax $(q_i K_{ima}^T +$ M_i) indicates $x_{mask}^{(i)}$ where to focus.
- We apply new query projections f_0' to each cross-attention layer for Mask Class Tokens but keep the original CLIP frozen $CrossAttn(\cdot) = softmax(\mathbf{Q}'_{mask}\mathbf{K}^{T}_{img} + \mathcal{M}_{mask}) \cdot V_{img}$ where $Q'_{mask} = f'_0(x_{mask})$.
- Mask Class Tokens obtain better attention weights through learning while the cross-attention results still lie in the row space of V_{ima} . Able to improve adaptation (from image to mask classification) while maintaining generalization.

Detailed Interpretation of Progressive Distillation

Student

Model

Preliminary: MaskCLIP^[1]

Mask Class Tokens extract features from CLIP tokens through masked cross-attention mechanism where mask proposals serve as attention masks.

Bad Mask

Proposals

 $CrossAttn(\cdot) = softmax(Q_{mask}K_{img}^T + \mathcal{M}_{mask}) \cdot V_{img}$ $Q_{\text{mask}}, K_{\text{img}}, V_{\text{img}} = f_Q(x_{\text{mask}}), f_K(x_{\text{img}}), f_V(x_{\text{img}})$ if *i*-th mask falls in *j*-th patch $\mathcal{M}_{\text{mask}}(i,j)$

^[1] Z. Ding, J. Wang, and Z. Tu. Open-Vocabulary Universal Image Segmentation with MaskCLIP. In ICML, 2023

Quantitative Results

Methods	Instance			Semantic				Panoptic		
	Base	Novel	All	A-150	A-847	P-59	P-459	PQ	PQ	PQ
XPM	41.5	21.6	36.3	-	-	-	-	-	-	-
LSeg+	-	-	-	18.0	3.8	46.5	7.8	-	-	-
OpenSeg	-	-	-	21.1	6.3	42.1	9.0	-	-	-
MaskCLIP	-	-	-	23.7	8.2	45.9	10.0	15.1	13.5	18.3
MasQCLIP	51.0	31.9	46.0	30.4	10.7	57.8	18.2	23.3	21.2	27.7
	+9.5	+10.3	+9.7	+6.7	+2.5	+11.3	+8.2	+8.2	+7.7	+9.4

Achieve substantial performance gain across all openvocabulary segmentation tasks with a unified framework.

Panoptic Segmentation: MasQCLIP is able to segment both thing(object) and stuff(background) categories more correctly.

Image

MaskCLIP

MasQCLIP